

Warriors Edge Simulation System

by Mark Thomas

ARL-TR-3430 February 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-3430 February 2005

Warriors Edge Simulation System

Mark Thomas

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

February 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January 2003–October 2003
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Warriors Edge Simulation System

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

P622783.Y10
5e. TASK NUMBER

6. AUTHOR(S)

Mark Thomas

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-CT
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3430

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In August 2003, the U.S. Army Research Laboratory (ARL) participated in an Office of the Secretary of Defense technology
insertion program named Horizontal Fusion (HF). The HF program is inserting cross-domain, web-based tools into the defense
force to enhance situational awareness, decrease communications delays, and speed up the use of Internet protocols in the
sharing of battlefield information. ARL’s role in the HF program is the Army’s story from the brigade to the platoon leader.
ARL technology development for the HF program included individual soldier telecommunications and computer gear, platoon
leader decision support tools to include visualization and message generation and distribution, a surrogate S2 brigade station,
information fusion technology, and global web-space integration. The work period for this effort was 6 months. This report will
briefly describe the Warriors Edge components and how simulation was used to stimulate, populate, and enhance the Warriors
Edge demonstration.

15. SUBJECT TERMS

modeling and simulation, live virtual integration, Warriors Edge, horizontal fusion, dismounted infantry SAF

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Mark Thomas

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

28 19b. TELEPHONE NUMBER (Include area code)

410-278-5011
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Warriors Edge Technology Components 1

3. Warriors Edge Simulation 2

4. ARL-Developed Software 4
4.1 DIStoTOS..4

4.2 S2StationDriver ...6

5. Conclusion 9

Appendix. POST Web Method Source Code 11

Bibliography 17

Distribution List 18

 iv

List of Figures

Figure 1. Platoon components...2
Figure 2. Brigade-level Warriors Edge components...3

List of Tables

Table 1. Mapping from DIS enumerated type to MIL-STD-2525B icon type.4
Table 2. Mapping from MIL-STD-2525B icon string to DIS enumerated type.............................5
Table 3. Conversion from DIS entity marking to platoon. ...5

 v

Acknowledgments

The contributions of many people went into the success of this effort. The author would like to
thank the members of the U.S. Army Research Laboratory Distributed Simulation Team—Maria
Lopez, Gary Moss, Andrew Neiderer, and Frederick Brundick, for code writing and creative
solutions to the challenges of this project. The author also thanks Timothy Gregory and Robert
Winkler of the Battlefield Visualization Branch for providing coding support for the Tactical
Object System. Thanks also go to Dr. Phillip Emmerman, Dr. Windell Ingram, Pat Jones, and
Barbara Broome for seeing the utility of modeling and simulation to the effort. The author also
thanks Tim Hanratty and John Dumer for the S2 Workstation interfacing advice. Appreciation is
given to Peter Gerken of Advanced Technology Laboratory for collaborating on the TACSUM
interface.

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

In August 2003, the U.S. Army Research Laboratory (ARL) participated in an Office of the
Secretary of Defense technology insertion program named Horizontal Fusion (HF). The HF
program is inserting cross-domain, web-based tools into the defense force to enhance situational
awareness, decrease communications delays, and speed up the use of Internet protocols (IP) in
the sharing of battlefield information. ARL’s role in the HF program is the Army’s story from
the brigade to the platoon leader. ARL technology development for the HF program included
individual soldier telecommunications and computer gear, platoon leader decision support tools
to include visualization and message generation and distribution, a surrogate S2 brigade station,
information fusion technology, and global web-space integration. These systems had to be
integrated, tested, and deployed in 6 months.

The scenario developed for the ARL effort was based on military operations in urban terrain
operations. The scenario involved three platoons operating in and around a town. One platoon
conducted surveillance and traffic control to the north, the second platoon conducted
reconnaissance south of the first platoon, and the third platoon entered the town and executed
operations there. Because of troop limitations, and to populate the global space with enough
troops, simulation was used to add units, provide intelligence messages, and stimulate actions to
be performed by the live troops.

This report will detail the simulation used in the ARL HF program Warriors Edge technology
development and demonstration. The components of the Warriors Edge technology and the
simulation software to exercise it will be described herein.

2. Warriors Edge Technology Components

Warriors Edge technology was developed to link the individual soldier to the global operational
space. This was accomplished by developing leading edge technologies at the platoon and
brigade levels around a common communications interface.

The platoon nodes each had modular universal laser equipment (MULE), robots, and individual
soldier ensembles. All items were equipped with global positioning system devices, for tracking,
and wireless communications. The MULE consisted of a vehicle and payload. The payload
contained electrical power, computers, and multiple wireless communications networks. It
served as the hub for the platoon communications system. There were three iRobot ATRV2s per
platoon and three iRobot PacBots per platoon. Each ATRV2 and PacBot carried onboard
sensors and cameras to relay information back to the MULE. The individual soldier ensembles

 2

were composed of computers for information processing, instrumented rifles, and voice-over IP
communications.

The brigade node consisted of a prototype S2 analyst workstation developed by ARL. The S2
workstation provided a graphical interface to display troop positions and text messages. The S2
workstation also contained a web browser to connect to the HF web portal for information
prompts and alerts, and provided screenshots of the current battle situation to the collateral space
for viewing by interested parties. Figure 1 shows the Warriors Edge platoon components, and
figure 2 shows the brigade components.

Figure 1. Platoon components.

3. Warriors Edge Simulation

Simulation was used to stimulate and populate the battle space. The simulation consisted of the
Dismounted Infantry Semi-Automated Forces (DISAF) variant of the OneSAF Testbed, and
ARL-developed network interface, data conversion, and text message transmission software.

 3

Figure 2. Brigade-level Warriors Edge components.

The role of simulation was two-fold. First, it would provide the necessary numbers of troops on
the battlefield and represent the actions of troops and vehicles. Secondly, it would provide
stimulation via simulated human intelligence messages to the S2 fusion station for intelligence
gathering and scenario alerts. To accomplish this mission, a dual system of SAF and manual
message transmission was used.

Multiple data formats were required. The SAF systems communicated using Distributed
Interactive Simulation (DIS) data packets. The individual soldier, robots, and MULE
communicated using the ARL Tactical Object System (TOS) protocol. The S2 station used an
in-house XML data format for individual and unit position information.

DISAF

The DISAF was used to create and orchestrate the movements and actions of units on the
battlefield. For Warriors Edge, there were three platoons in play. Two platoons were completely
simulated by the DISAF. The third platoon was composed of one live squad and two simulated
squads. Entities utilized in the simulation included friendly dismounted infantry fire teams,

 4

surrogate robots, unmanned infrared and acoustic ground sensors, and an enemy dismounted
platoon. The surrogate robots were modeled using the unmanned ground sensor entity.

4. ARL-Developed Software

Two message translation programs were developed. One served the platoon and below echelons,
and the other served above platoon. The platoon-level program, DIStoTOS (DtoT), was
designed to communicate between the individual soldier ensembles, robots, MULE, and the
DISAF. DtoT used the TOS communications protocol developed by ARL combined with a DIS
interface to communicate between DISAF entities and live entities on the battlefield.
S2StationDriver (S2SD) converted simulation data on the DIS network into XML formatted
strings for use by the Surrogate S2 Station via a web interface. In addition, S2SD provided the
user with the capability to transmit XML files to the web server as needed. These programs will
be described below.

4.1 DIStoTOS

DtoT runs in real time. It provides bidirectional message flow between the DIS network and the
TOS. The program listens to the DIS network, keeps a database of entities on the DIS network,
and formats TOS messages to create, update, and delete entities as necessary. It is intended to
populate a live exercise with simulated entities and to send live entity posture data to the
simulation network.

Information sent to TOS from the DIS network included entity identification, latitude and
longitude, entity type, and parent unit. Entity types were expressed as MIL-STD-2525B1 icon
strings. Icon strings were implemented for friendly and enemy dismounted infantry, the MULE,
a High Mobility Multipurpose Wheeled Vehicle (HMMWV), the unmanned guided vehicle
(UGV), a generic enemy vehicle, friendly unmanned ground robots, and an unknown entity.
Because DIS uses enumerated data for entity types, and TOS uses MIL-STD-2525B icon strings,
a mapping between DIS entity enumerations and MIL-STD-2525B icons was implemented as
follows (table 1):

Table 1. Mapping from DIS enumerated type to MIL-STD-2525B icon type.

DIS Kind DIS Country DIS Category DIS Subcategory MIL-STD-2525B Icon
3 225 NA NA FriendlyDI
3 222 NA NA EnemyDI
1 225 6 2 MULE
1 225 6 1 HMMWV
1 225 27 NA UGV
1 222 NA NA Enemy vehicle

Note: NA = not applicable.

1MIL-STD-2525B. Common Warfighting Symbology 1999.

 5

Mapping from TOS icons to DIS entity enumerations was implemented as follows (table 2):

Table 2. Mapping from MIL-STD-2525B icon string to DIS enumerated type.

Object/MIL STD 2525 Icon String

DIS
Kind

DIS
Domain

DIS
Country

DIS
Category

DIS
Subcategory

EnemyDI “SHGPEWR--------“ 3 1 222 1 205
FriendlyDI “SFGPEWR--------“ 3 1 225 1 32
MULE “SFGPEVU--------“ 1 1 225 6 2
HMMWV “SFGPEVUX-------“ 1 1 225 6 1
PacBot “SEPGEVAL-------“ 1 1 225 27 2
ATRV2 “SEPGVAL--------“ 1 1 225 27 2
UGS “SFGPES---------“ 1 1 225 27 2
Enemy Vehicle “SHGPEVUX-------“ 1 1 222 2 3

DIS entity information includes an 11-character marking field. This field was used to identify
each individual entity as well as indicate force structure. This mapping was implemented as
follows (table 3):

Table 3. Conversion from DIS entity marking to platoon.

Entity Type/Marking Field Position 5 6 Result
Dismounted infantry 1, 2, or 3 NA Platoon 1, platoon 2, platoon 3
All others 5, 6, 7, 8, 9 1, 2, or 3 Platoon 1, platoon 2, platoon 3
All others NA NA Unknown

Note: NA = not applicable.

For example, a marking of “100A264” is a member of platoon 2 if the entity is a dismounted
infantryman. A marking of “100A521” is a member of platoon 2 if the entity is a vehicle.

Coordinate conversion from latitude/longitude to DIS world coordinates was accomplished using
the Synthetic Environment Data Representation Interface Standard coordinate conversion
routines. Inputs to the converter were the Universal Transverse Mercator Easting and Northing
reference point and the grid zone number.

An entity list was kept for the DIS and the TOS networks. Because of the DIS entity timeout in
DISAF, TOS entity information needed frequent updates whether TOS updates or entity
movement occurred or not. A memory resident database of TOS entities was kept, and their data
were transmitted to the DIS network as Entity State PDUs every 5 s.

The TOS network required no heartbeat. DIS entity information was sent to the TOS network
when an entity was discovered, if it moved, once/min, or when it was deleted. Frequent updating
of the TOS network caused latency problems in the TOS system, so it was decided to only
update DIS information to the TOS network as required.

TOS network data are XML formatted. The Xerces parser from xml.apache.org was used to
perform the parsing from XML into the entity list structure.

 6

The DtoT has a command line interface to list entities, change the DIS entity timeout, delete all
TOS entities owned by DtoT, add DIS entities in DtoT to the TOS network, and shutdown the
program.

4.2 S2StationDriver

S2SD provided data to the prototype S2 Station in the Warriors Edge brigade-level web-based
information portal. Data provided were used to track friendly entities and insert messages used
for data fusion and information dissemination. S2SD provided a link between the web-based
prototype S2 Station and the DIS simulation network.

The prototype S2 workstation used a webserver for web interactions. The webserver, called the
TACSUM, used an XML data format for all web interactions. S2SD communicated to the
TACSUM, which then forwarded the message to the prototype S2 workstation.

An XML specification for TACSUM web interactions was developed. The specification, called
dcgsa, provided messages to convey posture data, freetext messages, and other battlefield
information. The dcgsa schema included data from the midb, gmi, and gov XML message
specifications for comprehensive message content.

Data flow between the S2SD and the TACSUM was via the Simple Object Access Protocol.
When data were ready for uploading to the TACSUM, a socket was created between the S2SD
and TACSUM, the data sent, and the socket closed.

S2SD aggregated DIS entity data into units for the S2 station. The S2 station, being a brigade-
level asset, displayed both individual entities and units. For this exercise, individual entities
were aggregated according to the process described in table 1. Two files were created. One, the
individual_dcgsa.xml file, was used to send posture data for each individual friendly entity in the
simulation. The second, units_dcgsa.xml, sent unit data (platoon 1, platoon 2, and platoon 3).
Each file was sent per iteration. On the first iteration, all entities were sent using the individual_
dcgsa.xml file. After that, only entities that moved were sent via the individual_dcgsa.xml file.
The units.xml file was sent each iteration.

Unit location was computed as the average location of all entities in the unit. There was a choice
between using the platoon leader’s location or the average, and the average was chosen. Because
unit location changes slowly, this fit well with the S2 workstation’s update rate of once every 2
min.

In addition to the automatic posture data updates, the S2SD provides the user the ability to send
an XML-formatted file to the TACSUM manually. This capability gives the S2SD the flexibility
to simulate multiple data inputs (human and signal intelligence) to the TACSUM for information
fusion. For the HF demonstration, the S2SD’s XML message transmission capability was used
to initiate scenario events by sending messages at scripted times.

 7

The individual_dcgsa.xml file follows the following form:

<?xml version='1.0' encoding='UTF-8'?>
<SIM_Update
 xmlns='simInterface.xsd'
 xmlns:sim='simInterface.xsd'
 xmlns:GMI='urn:midb:gmi:gov'
 xmlns:dcgsa='http://www.pmif.army.mil/DCGSA'
 xmlns:mil='urn:midb:gmi:gov'>
 <simUpdate>
 <dcgsa:DATETIME_CREATED>2003-07-
18T19:38:33.000</dcgsa:DATETIME_CREATED>
 <dcgsa:IND>
 <dcgsa:PARENT_UNIT_IDENTIFICATION>Platoon
3</dcgsa:PARENT_UNIT_IDENTIFICATION>
 <dcgsa:INDIVIDUAL_MASTER_KEY>100A351</dcgsa:INDIVIDUAL_MASTER_KEY>
 <GMI:AFFILIATION>F</GMI:AFFILIATION>
 <dcgsa:IND_ADDRESS>
 <dcgsa:INDIVIDUAL_MASTER_KEY>100A351</dcgsa:INDIVIDUAL_MASTER_KEY>
 <dcgsa:INDIVIDUAL_SEQUENCE>1</dcgsa:INDIVIDUAL_SEQUENCE>
 <dcgsa:LATITUDE>32.385556</dcgsa:LATITUDE>
 <dcgsa:LONGITUDE>-84.792931</dcgsa:LONGITUDE>
 <GMI:ELEVATION>0.010143</GMI:ELEVATION>
 </dcgsa:IND_ADDRESS>
 </dcgsa:IND>
 <dcgsa:IND>
 <dcgsa:PARENT_UNIT_IDENTIFICATION>Platoon
1</dcgsa:PARENT_UNIT_IDENTIFICATION>
 <dcgsa:INDIVIDUAL_MASTER_KEY>100A112</dcgsa:INDIVIDUAL_MASTER_KEY>
 <GMI:AFFILIATION>F</GMI:AFFILIATION>
 <dcgsa:IND_ADDRESS>
 <dcgsa:INDIVIDUAL_MASTER_KEY>100A112</dcgsa:INDIVIDUAL_MASTER_KEY>
 <dcgsa:INDIVIDUAL_SEQUENCE>1</dcgsa:INDIVIDUAL_SEQUENCE>
 <dcgsa:LATITUDE>32.373058</dcgsa:LATITUDE>
 <dcgsa:LONGITUDE>-84.794886</dcgsa:LONGITUDE>
 <GMI:ELEVATION>116.041748</GMI:ELEVATION>
 </dcgsa:IND_ADDRESS>
 </dcgsa:IND>
 </simUpdate>
</SIM_Update>

The unit_dcgsa.xml file has the following format:

<?xml version='1.0' encoding='UTF-8'?>
<SIM_Update

 8

 xmlns='simInterface.xsd'
 xmlns:sim='simInterface.xsd'
 xmlns:GMI='urn:midb:gmi:gov'
 xmlns:dcgsa='http://www.pmif.army.mil/DCGSA'
 xmlns:mil='urn:midb:gmi:gov'>
 <simUpdate>
 <dcgsa:DATETIME_CREATED>2003-07-
18T19:38:33.000</dcgsa:DATETIME_CREATED>
 <dcgsa:UNIT>
 <dcgsa:TRUE_UNIT_DESIGNATION>Platoon 1</dcgsa:TRUE_UNIT_DESIGNATION>
 <dcgsa:FUNCT_ROLE>541</dcgsa:FUNCT_ROLE>
 <dcgsa:INTEL_PEDIGREE>1</dcgsa:INTEL_PEDIGREE>
 <dcgsa:UNIT_MASTER_KEY>Platoon 1</dcgsa:UNIT_MASTER_KEY>
 <dcgsa:LATITUDE>32.371780</dcgsa:LATITUDE>
 <dcgsa:LONGITUDE>-84.799443</dcgsa:LONGITUDE>
 </dcgsa:UNIT>
 <dcgsa:UNIT>
 <dcgsa:TRUE_UNIT_DESIGNATION>Platoon 2</dcgsa:TRUE_UNIT_DESIGNATION>
 <dcgsa:FUNCT_ROLE>541</dcgsa:FUNCT_ROLE>
 <dcgsa:INTEL_PEDIGREE>1</dcgsa:INTEL_PEDIGREE>
 <dcgsa:UNIT_MASTER_KEY>Platoon 2</dcgsa:UNIT_MASTER_KEY>
 <dcgsa:LATITUDE>32.371713</dcgsa:LATITUDE>
 <dcgsa:LONGITUDE>-84.809940</dcgsa:LONGITUDE>
 </dcgsa:UNIT>
 <dcgsa:UNIT>
 <dcgsa:TRUE_UNIT_DESIGNATION>Platoon 3</dcgsa:TRUE_UNIT_DESIGNATION>
 <dcgsa:FUNCT_ROLE>541</dcgsa:FUNCT_ROLE>
 <dcgsa:INTEL_PEDIGREE>1</dcgsa:INTEL_PEDIGREE>
 <dcgsa:UNIT_MASTER_KEY>Platoon 3</dcgsa:UNIT_MASTER_KEY>
 <dcgsa:LATITUDE>32.385605</dcgsa:LATITUDE>
 <dcgsa:LONGITUDE>-84.793055</dcgsa:LONGITUDE>
 </dcgsa:UNIT>
 </simUpdate>
</SIM_Update>

Transmitting the XML files was performed using the POST method. The function,
PostFileToWebServer, takes three arguments. The first argument is the hostname of the
webserver. The second argument is the name of the file to post. This must be the entire
pathname of the file. The third argument is the port that the webserver is listening to for
connections. PostFileToWebServer calls helper functions to open a connection, read in the file,
prepend and append appropriate headers and footers, and send the file. After sending the file,
PostFileToWebServer() performs a select() on the socket to detect a response from the
webserver(not used). The socket is then closed, and the function returns. The implementation of
the web posting is included in the appendix.

 9

5. Conclusion

An exercise to highlight the force multiplication from the use of web-based technologies was
conducted. The U.S. Army component, called Warriors Edge, was a vital element to the success
of the exercise. To demonstrate the Army system, software was written to web-enable certain
Army functions. The merger of live and simulated Warriors Edge components and systems
provided a realistic, exciting exercise and demonstration of the power of web-enabled systems to
mission effectiveness, increased soldier survivability, and lethality.

Future directions for this software development and research are in the areas of fusion modeling
and simulation, human intelligence inference from scenario events, and increased sensor types.
In addition, a more comprehensive graphical user interface will provide more capability to the
user. For example, given the capability to type freetext messages, a user can inject any type of
message from any sensor desired.

 10

INTENTIONALLY LEFT BLANK.

 11

Appendix. POST Web Method Source Code

The following code is the implementation of the POST web method. The POST method is used
to send data to a web server. In the S2StationDriver, this function was used to send the
individual_dcgsa.xml and unit_dcgsa.xml files to the TACSUM web server.

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include <sys/time.h>
#include <fcntl.h>

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <iostream.h>

#include <fstream.h>
//
// This code uploads a file or files to a web
// server
//

struct sockaddr_in server;
static int fd; // The server socket to write to
int updateRate = 5;
int fileCounter = 0;
//
//
//
int OpenConnection(char *host, int port)
{
 struct hostent *hp = gethostbyname(host);

 if(hp == NULL){

 12

 cerr << "ERROR - OpenConnection: hostname not found" << endl;
 return(0);
 }

 bzero((char *)&server, sizeof(server));
 bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
 server.sin_family = hp->h_addrtype;
 server.sin_port = htons(port);

 fd = socket(AF_INET, SOCK_STREAM, 0);
 if(fd < 0){
 cerr << "OpenConnection : socket call failed" << endl;
 return(0);
 }

 int i;

 if(connect(fd, (struct sockaddr *)&server, sizeof(server)) < 0){
 cerr << strerror(errno) << endl;
 return(0);
 }

 cerr << "Connection Established" << endl;
 return(1);
}
//
//
//
static int getSize(char *filename)
{
 struct stat buf;
 if(stat(filename, &buf) == 0)
 return(buf.st_size);
 else{
 cerr << "ERROR - stat of " << filename << " unsuccessful" << endl;
 return(0);
 }
}
//
//
//
char *importFile(char *filename)
{
 FILE *fp = fopen(filename, "r");
 if(fp == NULL)
 return(NULL);

 13

 int fileSize = getSize(filename);
 char *p = (char *)malloc(fileSize + 1);
 if(p == NULL){
 cerr << "importFile: Cannot malloc " << fileSize << " bytes" << endl;
 return(NULL);
 }

 char str[128];

 int first = 1;
 int count = 0;

 while(fgets(str, 128, fp) != NULL){
 if(first){
 strcpy(p, str);
 first = 0;
 }
 else
 strcat(p, str);

 count += strlen(str);
 }

 fclose(fp);

 return(p);
}

static char *postHeader = "POST /dcgsa/servlet/EntityStatusServices HTTP/1.0\nFrom:
WarriorsEdge\nUser-Agent: WarriorsEdgeSim\nContent-Type: text/xml";
//
//
//

void PostFile(char *filename)
{
 extern int recordFiles;
 extern int playFiles;
 extern char archiveDir[];
 extern ifstream indexIn;
 extern ofstream indexOut;
 extern time_t missionStart;

 time_t timeNow;
 time_t missionTime;
 struct tm *gmStruct;

 14

 char timeStamp[32];
 char *timeBuf;

 int sent;

 char *bigBuffer;

 char *fileData = importFile(filename);

 if(fileData == NULL){
 cerr << "ERROR - PostFile: cannot open file " << filename << endl;
 return;
 }

 timeNow = time(0);
 missionTime = timeNow - (time_t)missionStart;

// update time stamp in XML file
// if you want to clobber the date but not the time,
// simply make the timeStamp string shorter
 gmStruct = gmtime(&timeNow);
 sprintf(timeStamp, "%4d-%02d-%02dT%02d:%02d:%02d",
 gmStruct->tm_year + 1900,
 gmStruct->tm_mon + 1,
 gmStruct->tm_mday,
 gmStruct->tm_hour,
 gmStruct->tm_min,
 gmStruct->tm_sec);

// strlen("DATETIME_CREATED>") == 17
// strlen(timeStamp) == 19 ("2003-06-12Z17:25:20")
 timeBuf = strstr(fileData, "DATETIME_CREATED>");

 if(timeBuf == NULL){
 cerr << "No Datetime in this message" << endl;
 }
 else{
 timeBuf += 17;

 cerr << "Replacing datetime " << timeBuf << endl;

 for (int i = 0; i < 19; i++)
 *timeBuf++ = timeStamp[i];
 }
// copy data to archive file (if desired)
 if (recordFiles){

 15

 int copyFd;
 char newName[128];

 ++fileCounter;
 sprintf(newName, "%s/%05d%s", archiveDir, fileCounter, filename);
 copyFd = open(newName, O_CREAT | O_WRONLY, 0777);
 sent = write(copyFd, fileData, strlen(fileData));

 if(sent < strlen(fileData)){
 cerr << "PostFile : short write on file copy" << endl;
 }
 else{
 cerr << "copied " << filename << " to " << newName << endl;
 }
 close(copyFd);

// save log info in index file
 indexOut << missionTime << ' ' << newName << endl;
 indexOut.flush();
 }

 char headerD[128];
 sprintf(headerD,"%s\n",filename);
 int contentLength = strlen(fileData) + strlen(headerD);

 bigBuffer = (char *)malloc(contentLength + 1024);

 sprintf(bigBuffer,"%s\nContent-Length:%d\n\n%s\n%s\n\0",
 postHeader, contentLength, filename, fileData);

 sent = write(fd, bigBuffer, strlen(bigBuffer));

 if(sent < strlen(bigBuffer)){
 cerr << "PostFile : short write" << endl;
 }

 free(fileData);
 free(bigBuffer);
}
//
//
//
//
int PostFileToWebServer(char *serverName, char *fileName, int port)
{

 16

 struct timeval timeout;
 char response[64000];

 cout << "Posting " << fileName << " to " << serverName << " on port " << port << endl;

 if(!OpenConnection(serverName, port)){
 cerr << "ERROR - cannot open connection to web server " << endl;
 return(0);
 }

 PostFile(fileName);

 int ready;

 fd_set readSet;

 FD_ZERO(&readSet);
 FD_SET(fd, &readSet);

 timeout.tv_sec = updateRate;
 timeout.tv_usec = 0;

 ready = select(fd + 1, &readSet, 0, 0, &timeout);

 close(fd);

 return(1);
}

 17

Bibliography

The Apache Software Foundation. Xerces C++ Parser. http://www.apache.org/xerces-
c/index.html, 2002–2003.

Harold, E.; Means, W. XML In A Nutshell, 2nd Ed.; O’Reilly and Associates, Inc.: Sebastopol,
CA, 2002.

Institute for Simulation and Training. Enumeration and Bit-Encoded Values for use With IEEE
1278.1-1994, Distributed Interactive Simulation – Application Protocols; IST-CR-93-46;
Institute for Simulation and Training: Orlando, FL, 1993.

Lockheed Martin Advanced Distributed Simulation. Users Manual for OTB SAF V1.0. On-line
manual, 1999.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 18

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 19

 1 US ARMY SIMULATION TRNG
 AND INSTRNTL COM
 J STAHL
 12350 RESRCH PRKWY
 ORLANDO FL 32826-3736

 1 US SBCCOM
 NATICK SOLDIER CTR
 AMSSB RSS MA (N)
 D TUCKER
 KANSAS ST
 NATICK MA 01760-5020

 1 US ARMY RSRCH INST
 B KNERR
 12350 RSRCH PRKWY
 ORLANDO, FL 32826-3276

 1 US ARMY RSRCH DVPMNT
 AND ENG COM
 J GROSSE
 12423 RSRCH PKWY
 ORLANDO FL 32828

 2 USARL
 AMSRD ARL CI CB
 L TOKARCIK
 R WINKLER
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 USARL
 AMSRD ARL CI
 J GOWENS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 15 DIR USARL
 AMSRD ARL CI CT
 M THOMAS (6 CPS)
 F BRUNDICK
 M LOPEZ
 G MOSS
 P JONES
 AMSRD ARL SL BB
 R SANDMEYER
 P TANENBAUM
 AMSRD ARL SL BE
 L BUTLER
 C KENNEDY
 AMSRD ARL WM BF
 G SAUERBORN

 20

INTENTIONALLY LEFT BLANK.

